Seti’s Hunt For Artificially Intelligent Alien Machines

 

The structure of deoxyribonucleic acid (DNA), ...

Image via Wikipedia

 

Searching for extraterrestrial life is extremely abstemious no matter what kind of tactics we are employing to detect signs of extraterrestrial life. Wait, shouldn’t we define our premise of  being intelligent without any kind of  surmised indulgence. The search so far has focused on Earth-like life because that is all we know. Hence, most of the planning missions are focused on locations where liquid water is possible, emphasizing searches for structures that resemble cells of terran organisms, small molecules that might be the products of carbonyl metabolism and amino acids and nucleotides similar to those found in terrestrial proteins and DNA. I’ve written a article, not quite a while back though, ‘Searching For Other Life Forms in Extraterrestrial Environments’ in which I’ve illustrated that life could be a sort of  ‘organized complexity’ that consumes energy, utilized it for some necessary biological/non-biological operations endowed with capability to reproduce ‘itself’  from ‘self’. S o if we really want to alien life forms which are conscious and intelligent, we have to change the view that is mainly inclined to see life only like that is diversed over Earth.

However, life that may have been originated elsewhere, even within our own solar system, could be unrecognizable compared with life here and thus could not be detectable by telescopes and spacecraft landers designed to detect terrestrial biomolecules or their products. We must recognize that our knowledge of the essential requirements for life and therefore our concept on it, is based on our understanding of the biosphere during the later stages of Earth history. Since we only know one example of biomolecular structures for life and considering the difficulty of human mind to create different ideas from what it already knows, it is difficult for us to imagine how life might look in environments very different from what we find on Earth. In the last decades, however, experiments in the laboratory and theoretical works are suggesting that life might be based on molecular structures substantially different from those we know.

It is a relatively simple matter to distinguish between living and inorganic matter on Earth by biochemical experiments even though no formal definition of  life in biochemical terms exists. Experience suggests, for example, that a system capable of converting water, atmospheric nitrogen and carbon dioxide into protein, using light as a source of energy, is unlikely to be inorganic. This approach for recognition of life by phenomenology is the basis of the experiments in detection of life so far proposed. Its weakness lies not in the lack of a formal definition but in the assumption that all life has a common biochemical ancestry.

It is also possible to distinguish living from inorganic matter by physical experiments. For example, an examination of the motion of a salmon swimming upstream suggests a degree of purpose inconsistent with a random inorganic process. The physical approach to recognition of life is no more rigorous, at this stage, than is the biochemical one; it is, however, universal in application and not subject to the local constraints which may have set the biochemical pattern of life on Earth.

Past discussions of the physical basis of life  reach an agreed classification as follows:

“Life is one member of the class of phenomena which are open or continuous reaction systems able to decrease their entropy at the expense of substances or energy taken in from the environment and subsequently rejected in a degraded form”.

This classification is broad and includes also phenomena such as flames, vortex motion and many others. Life differs from the other phenomena so classified in its singularity, persistence, and in the size of the entropy decrease associated with it. Vortices appear spontaneously but soon vanish; the entropy decrease associated with the formation of a vortex is small compared with energy flux. Life does not easily form, but ‘persists indefinitely and vastly modifies its environment. The spontaneous generation of life, according to recent calculations from quantum mechanics [4, 5], is extremely improbable. This is relevant to the present discussion through the implication that wherever life exists its biochemical form will be strongly determined by the initiating event. This in turn could vary with the planetary environment at the time of initiation.

On the basis of the physical phenomenology already mentioned, a planet bearing life is distinguishable from a sterile one as follows:

  • The omnipresence of intense orderliness and of structures and of events utterly improbable on a basis of thermodynamic equilibrium.
  • Extreme departures from an inorganic steady-state equilibrium of chemical potential.

This orderliness and chemical disequilibrium would to a diminished but still recognizable extent be expected to penetrate into the planetary surface and its past history as fossils and as rocks of biological origin. According to a research paper ‘Physical Basis For Detection of  Life'[Nature Vol. 207, No. 4997, pp. 568-570, August 7, 1965.] Chemical detection of life is indeed possible based on equilibrium and orderness. So, how should we search for life(here I’m not considering that this is necessarily a intelligent life).

The distinguishing features of a life-bearing planet  suggest the following simple experiments in detection of life:

A. Search for order.

  1. Order in chemical structures and sequences of structure. A simple gas chromatograph or a combined gas chromatograph – mass spectrometer instrument would seek ordered molecular sequences as well as chemical identities.
  2. Order in molecular weight distributions. Polymers of biological origin have sharply defined molecular weights, polymers of inorganic origin do not. A simple apparatus to seek ordered molecular weight distributions in soil has not yet been proposed but seems worthy of consideration.
  3. Looking and listening for order. A simple microphone is already proposed for other (meteorological) purposes on future planetary probes; this could also listen for ordered sequences of sound the presence of which would be strongly indicative of life. At the present stage of technical development a visual search is probably too complex ; it is nevertheless the most rapid and effective method of life recognition in terms of orderliness outside the bounds of random assembly.

B. Search for non-equilibrium.

  1. Chemical disequilibrium sought by a differential thermal analysis (DTA) apparatus. Two equal samples of the planetary surface would be heated in a DTA apparatus: one sample in the atmosphere of the planet, the other in an inert gas, such as argon. An exotherm on the differential signal between the two samples would indicate a reaction between the surface and its atmosphere, a condition most unlikely to be encountered{ where there is chemical equilibrium as in the absence of life. It should be noted that this method would recognize reoxidizing life on a planet with a reducing atmosphere. This experiment could with advantage and economy be combined with, for example, the gas chromatography mass spectrometry experiment (Al) where it is necessary to heat the sample for vaporization and pyrolysis.
  2. Atmospheric analysis. Search for the presence of compounds in the planet’s atmosphere which are incompatible on a long-term basis. For example, oxygen and hydrocarbons co-exist in the Earth’s atmosphere.
  3. Physical non-equilibrium. A simplified visual search apparatus programmed to recognize objects in non-random motion. A more complex assembly could recognize objects in metastable equilibrium with the gravitational field of the planet. Much of the plant life on Earth falls into this category.

 

The abundance of n-alkanes from an inorganic source (A), Fischer-Tropsch hydrocarbons, and from a biological source (B), wool wax. The observed abundances (•-•) are compared with normalized Poisson distributions (-) around the preponderant alkanea detection experiments and to the planning of subsequent experiments. Even on Earth whore life is abundant there are many regions, such as those covered by fresh snow, where a surface sample might be unrewarding in the search for life. The atmospheric composition is largely independent of the site of sampling and provides an averaged value representative of the steady state of chemical potential for the whole planetary surface.

 

Experiments A1, B1 and B2 are the most promising for the development of practical instruments. Indeed, the gas chromatography – mass spectrometry combination experiment and the DTA experiment already proposed for planetary probes are, with minor modifications, capable of recognizing the ordered sequences and chemical disequilibrium discussed earlier. Experiment B2, atmospheric analysis, is simple and practical as well as important in the general problem of detection of life. A detailed and accurate knowledge of the composition of the planetary atmosphere can directly indicate the presence of life in terms of chemical disequilibrium; such knowledge also is complementary to the understanding of other life.

Galactic Clubs

Paul Davies suggests the approach of observational SETI – which tries to detect narrow-band signals directed at Earth by an extraterrestrial civilization — is probably futile, because the existence of a communicating civilization on Earth will not be known to any alien community beyond 100 light years. Instead, he argues “we should search for any indicators of extraterrestrial intelligence, using the full panoply of scientific instrumentation, including physical traces of very ancient extraterrestrial projects in or near the solar system. Radio SETI needs to be re-oriented to the search for non-directed beacons, by staring toward the galactic center continuously over months or even years, and seeking distinctive transient events (‘pings’). This ‘new SETI’ should complement, not replace, traditional radio and optical SETI.  But on second thought, maybe these ideas are not all that fresh. I’ve read these suggestions before in the SETI literature. Indeed, I found most of them cited in his footnotes. Nevertheless we should thank Davies for assembling them in his stimulating and lucid new book.
What are the possible reasons for the “Great Silence”? The following list is of course not original:

1) We are indeed alone, or nearly so. There is no ETI, nor a “Galactic Club” — radio astronomer Ronald Bracewell’s name for the communicating network of advanced civilizations in our galaxy (GC for short).

2) The GC, or at least ETI exists, but is ignorant of our existence (as Davies has once again suggested).

3) We are unfit for membership in the GC, so the silence is deliberate, with a very strict protocol evident, “No Messages to Primitive Civilizations!” Only inadvertent, sporadic and non-repeated signals – for example, the “Wow” signal can be detected by a primitive civilization, with opaque signal content not distinguishable from natural signals or noise.

The first explanation is contrary to the subtext of astrobiology, the belief in quasi-deterministic astrophysical, planetary and biologic evolution. This view of life’s inevitability in the cosmos is a view (or, shall I admit, a prejudice) I heartedly endorse. Most scientists active in the astrobiological research program would support an optimistic estimate of all the probabilities leading up to multicellular life on an Earth-like planet around a Sun-like star.

I happen to be an optimist on this issue too. I have argued that encephalization – larger brain mass in comparison to body mass — and the potential for technical civilizations are not very rare results of self-organizing biospheres on Earth-like planets around Sun-like stars. Biotically-mediated climatic cooling creates the opportunity for big-brained multicellular organisms, such as the warm-blooded animals we observe on our planet. Note that several such animals have now been shown to pass the “mirror test” for self-consciousness: the great apes, elephants, dolphins and magpies, and the list is growing. But if the pessimists concede just one of the millions if not billions of Earth-like planets is the platform for just one technical civilization that matures to a planetary stage, advancing beyond our present primitive self-destructive stage, just one advanced civilization with the curiosity to spread through the galaxy, at sub-light speeds with Bracewell probes to explore and document an Encyclopedia Galactica, then what should we expect?
First, the galaxy should be thoroughly populated with surveillance outposts on a time scale much smaller than the time it took on Earth to produce this cosmically pathetic civilization we call the nearly 200 member nation states of the United Nations, with humanity now hanging under two self-constructed Swords of Damocles: the twin threats of catastrophic global warming and nuclear war.

Second, THEY, or at least their outposts, surely know we exist, since to believe THEY are ignorant of our existence is to assume they somehow bypassed us in their expansion into the galaxy, a scenario I simply find unworthy if not unbelievable for an advanced civilization, especially one in existence for millions if not billions of years. It is important to note that this conclusion is informed by present day physics and chemistry, not a post-Einstein theory that transcends the speed of light.

So we are left with option 3: the aliens are deliberately avoiding communicating with our primitive world. I submit this is by far the most plausible given our current knowledge of science and the likely sheer ordinariness of our chemistry and planetary organization.

Why would we be considered primitive? This should be a no-brainer, even for an Earthling. The world spends $1.4 trillion in military expenditures while millions of our species still die of preventable causes every year. Carbon emissions to the atmosphere continue to climb, even though presently available renewable technologies such as wind turbines exist and are sufficient to completely replace our unsustainable energy infrastructure. As J.D. Bernal once put it, “There is a possibility that the oldest and most advanced civilizations on distant stars have in fact reached the level of permanent intercommunication and have formed…a club of communicating intellects of which we have only just qualified for membership and are probably now having our credentials examined. In view of the present chaotic political and economic situation of the world, it is not by any means certain that we would be accepted.

The technical requirements for a galaxy-wide search are dictated by the size of the radio telescope, with the detection range proportional to the effective diameter of the telescope. A large enough radio telescope situated in space could potentially set meaningful upper limits on the rate of emergence of primitive Earth-like civilizations, without ever actually detecting the leakage radiation of even one ET civilization.  But just how big a telescope is required for this project, and at what cost? Our 1988 paper provided such estimates: a dish diameter on the order of 500 kilometers, at a cost of roughly $10 trillion. Perhaps the cost has come down somewhat (but note the estimate was in 1988 dollars). This is surely a project with a vanishingly small chance of implementation in today’s world. I could only conceive of a demilitarized newly mature planetary civilization, call it Earth-United (Finally!), with any intention of implementing such an ambitious project that has no apparent immediate practical benefits. Then and only then would we successively detect a message from the GC, presumably faint enough to be only detectable with a huge radio telescope in space.

On the other hand, the GC may be monitoring biotically-inhabited planets by remote Bracewell probes that have programmed instructions. Such a probe would plausibly be now hiding in the asteroid belt (as Michael Papagiannis once suggested). If the GC exists, there was ample time to set up this surveillance system long ago. Surveillance probes so situated in planetary systems would send welcoming signals to newly mature civilizations, with the potential for a real conversation with artificial intelligence constructed by the GC, if not reconstructed biological entities. If this proposed surveillance system is absent, we should expect the GC to use highly advanced telescopes to monitor planetary systems that have prospects for the emergence of intelligent life and technical civilizations. These alien telescopes could use gravitational lenses around stars. Planetary system candidates to the GC could expect to receive continuous beacons, but the signals would be very weak or disguised so that they would only be decipherable by newly mature civilizations that just pass the entrance requirements. The problem with this scenario is there would be a fairly long communication delay with the GC, because they would be so far away. Nevertheless, reception of a rich message from the GC is possible. The material and/or energy resources needed for these signals to be recognized must correspond with great probability to a newly ripe mature civilization. Hence, cleverness in itself cannot be the criteria for successful detection and decipherment, otherwise a brilliant scientist on a primitive civilization might jump the GC protocol.

I submit that if we want to enter the Galactic Club, the challenge lies in reconstructing our global political economy. A few minor side benefits should result, like no more war, no more poverty, a future for all of humanity’s children with a substantial proportion of biodiversity intact. We should not expect the Galactic Club to save us from ourselves.

Machine Intelligence

It took until the 17th century for us to reject Aristotle’s vision of a universe where our Sun and the stars revolved around the Earth. Search for Extraterrestrial Intelligence (SETI) Senior Astronomer Seth Shostak points out that up until a century ago, the scientific community believed a vast engineering society was responsible for building an irrigation system on the surface of Mars. Discovering the Martians could, in principle, be done by simply turning an Earth-based telescope in the direction of the Red Planet. Now it seems that our best chance for finding Martian life is to dig deep into the surface in search of subterranean microbes.

Our idea of extraterrestrial life has changed drastically in 100 years, but our search strategies have not kept up. In his  paper “What ET will look like and why should we care?” for the November-December issue of Acta Astronautica, Shostak argues that SETI might be more successful if it shifts the search away from biology and focuses squarely on artificial intelligence. Shostak sees a clear distinction between life and intelligence: he says we should be searching for extraterrestrial machines.

ET machines would be infinitely more intelligent and durable than the biological intelligence that invented them. Intelligent machines would in a sense be immortal, or at least indefinitely repairable, and would not need to exist in the biologically hospitable “Goldilocks Zone” most SETI searches focus on. An AI could self-direct its own evolution. Every new instance of an AI would be created with the sum total of its predecessor’s knowledge preloaded. The machines would require two primary resources: energy to operate with and materials to maintain or advance their structure. Because of these requirements, Shostak thinks SETI ought to consider expanding its search to the energy- and matter-rich neighborhoods of hot stars, black holes and neutron stars.

Shostak further argues that Bok globules are another search target for sentient machines. These dense regions of dust and gas are notorious for producing multiple-star systems. At around negative 441 degrees Fahrenheit, they are about 160 degrees F colder than most of interstellar space. This climate could be a major draw because thermodynamics implies that machinery will be more efficient in cool regions that can function as a large “heat sink”. A Bok globule’s super-cooled environment might represent the Goldilocks Zone for the machines. But because black holes and Bok globules are not hospitable to life as we know it, they are not on SETI’s radar. Machines have different needs. They have no obvious limits to the length of their existence, and consequently could easily dominate the intelligence of the cosmos. In particular, since they can evolve on timescales far, far shorter than biological evolution, it could very well be that the first machines on the scene thoroughly dominate the intelligence in the galaxy. It’s a “winner take all” scenario.

I find Shostak’s claim that alien should be resting in super cold zones that can function a large heat sink, is equally as falsifiable. A machine indeed need a heat sink but only in its premordial age. Since aliens have created such kind of super intelligent machine that can comprehend and interact efficiently with our mysterious universe, it becomes necessary imitate the premise that such machines would more likely be self replicative. A replicative would more likely be resting somewhere near a asteroid belt from where it could get material to survive3 and self reproduce it on to.  A number of fundamental but far-reaching ethical issues are raised by the possible existence of replicating machines in the Galaxy. For instance, is it morally right, or equitable, for a self-reproducing machine to enter a foreign solar system and convert part of that system’s mass and energy to its own purposes? Does an intelligent race legally “own” its home sun, planets, asteroidal materials, moons, solar wind, and comets? Does it make a difference if the planets are inhabited by intelligent beings, and if so, is there some lower threshold of intellect below which a system may ethically be “invaded” or expropriated? If the sentient inhabitants lack advanced technology, or if they have it, should this make any difference in our ethical judgment of the situation?

The number of intelligent races that have existed in the pant may be significantly greater than those presently in existence. Specifically, at this time there may exist perhaps only 10% of the alien civilizations that have ever lived in the Galaxy – the remaining 90% having become extinct. If this is true, then 9 of every 10 replicating machines we might find in the Solar System could be emissaries from long-dead cultures . If we do in fact find such machines and are able to interrogate them successfully, we may become privy to the doings of incredibly old alien societies long since perished. These societies may lead to many others, so we may be treated, not just to a marvelous description of the entire biology and history of a single intelligent race, but also to an encyclopedic travelogue describing thousands or millions of other extraterrestrial civilizations known to the creators of the probe we are examining. Probes will likely contain at least an edited version of the sending race’s proverbial “Encyclopedia Galactica,” because this information is essential if the probe is to make the most informed and intelligent autonomous decisions during its explorations.

SRS probes can be sent to other star systems to reproduce their own kind and spread. Each machine thus created may be immortal (limitlessly self-repairing) or mortal. If mortal, then the machines may be further used as follows. As a replicating system degrades below the point where it is capable of reproducing itself, it can sink to a more simple processing mode. In this mode (useful perhaps as a prelude to human colonization) the system merely processes materials, maybe also parts and sub-assemblies of machines, as best it can and stockpiles them for the day when human beings or new machines will arrive to take charge and make use of the processed matter which will then be available. As the original machine system falls below even this level of automation competence, its function might then be redirected to serve merely as a link in an expanding interstellar repeater network useful for navigation or communications. Thus, at every point in its lifespan, the SRS probe can serve its creators in some profitable capacity. A machine which degrades to below the ability to self-reproduce need not simply “die.”

In my earlier article “More Speculations About Intelligent Self  Replicating Exploration Probes“, I pointed out that such probes would more likely be ‘Postmodified Biological’. It is not to dismay that such probes could go through evolutionary changes and be more intelligent. A consensus is that replicating probes should be manufactured using nanomaterials e.g. catoms while it seems significantly plausible that such probes could , in fact, be biological based on rather different mechanisms-brain can be programmed and a powerful microprocessor and other cyberweaponry could be installed, a kind of cyberbiotic probes, designed in a essence to be able of surviving interstellar radiation. Vivid changes as per accordance to requirements, could be installed to work perfectly and replicate themselves even when there is no cargo halt to get metallic material.

[Ref: Astrobiology Magazine, quotations from Astrobiology Mgazine, Nature Vol. 207, No. 4997, pp. 568-570, August 7, 1965]

About bruceleeeowe
An engineering student and independent researcher. I'm researching and studying quantum physics(field theories). Also searching for alien life.

6 Responses to Seti’s Hunt For Artificially Intelligent Alien Machines

  1. Mark Louis says:

    Same question again..
    Can’t we find ‘creators’?
    mark.

    • bruceleeeowe says:

      We can get acquainted to creator if (I)creator decides to come here or, (II) during our mission to other planet. These are only two cases when we can have direct contact with creators. However, chances are far more that we would encounter exploration probes first.

  2. Well, such super-advanced machine or robot life-forms dwelling in the Asteroid belt might consist of relatively-small units, like countless cellphones or Ipods that are telemetrically or Blue Tooth connected to each other in a super-mind or super organism. Individually, they might be inconsequential, but together, they could have a God-Like intellect and abilities, and by working together with Nanotech features, they could construct nearly any type of artifact they needed to mass-produce or reproduce themselves. I think there was an old ‘Astro Boy’ episode about an army of robots that could organize themselves into a giant space battlecraft, which comes to mind. Remember how termites are nearly helpless individually but can build massive habitat structures collectively. If that sounds far-fetched, well, our own cellphones are moving towards that direction. We might eventually develop an ‘Ariel’, a vast disembodied cyber-intelligence living in all our cellphones and Internet networkings, that would automatically alert and advise and coordinate us in the case of disasters. It could do things like coordinate a universal car pooling project to solve problems like China’s unbearable traffic dilemma.

  3. Pingback: World Spinner

  4. Pingback: Self Replication in Alien Life Forms: Alien Sex? « WeirdSciences

  5. Pingback: Self Replication in Alien Life Forms: Alien Sex? » WeNewsIt

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: