Should We Terraform Mars? A Debate

This is a part of a debate organised by NASA. Science Fiction Meets Science Fact. ‘What are the real possibilities, as well as the potential ramifications, of transforming Mars?’ Terraform debaters left to right, Greg Bear , author of such books as “Moving Mars” and “Darwin’s Radio.”; David Grinspoon , planetary scientist at the Southwest Research Institute; James Kasting , geoscientist at Pennsylvania State University; Christopher McKay , planetary scientist at NASA Ames Research Center.; Lisa Pratt , biogeochemist at Indiana University; Kim Stanley Robinson , author of the “Mars Trilogy” (“Red Mars,” “Green Mars” and “Blue Mars“); John Rummel , planetary protection officer for NASA; moderator Donna Shirley , former manager of NASA’s Mars Exploration Program at the Jet Propulsion Laboratory.

Donna Shirley: Greg, what are the ethics of exploring Mars?

Greg Bear: You usually talk about ethics within your own social group. And if you define someone as being outside your social group, they’re also outside your ethical system, and that’s what’s caused so much trauma, as we seem to be unable to recognize people who look an awful lot like us as being human beings.

When we go to Mars, we’re actually dealing with a problem that’s outside the realm of ethics and more in the realm of enlightened self-interest. We have a number of reasons for preserving Mars as it is. If there’s life there, it’s evolved over the last several billion years, it’s got incredible solutions to incredible problems. If we just go there and willy-nilly ramp it up or tamp it down or try to remold it somehow, we’re going to lose that information. So that’s not to our best interest.

We were talking earlier about having a pharmaceutical expedition to Mars, not just that but a chemical expedition to Mars, people coming and looking for solutions to incredible problems that could occur here on Earth and finding them on Mars. That could generate income unforeseen.

If we talk about ethical issues on a larger scale of how are other beings in the universe going to regard how we treat Mars, that’s a question for Arthur C. Clarke to answer, I think. That’s been more his purview: the large, sometimes sympathetic eye staring at us and judging what we do.

We really have to look within our own goals and our own heart here. And that means we have to stick within our social group, which at this point includes the entire planet. If we decide that Mars is, in a sense, a fellow being, that the life on Mars, if we discover them – and I think that we will discover that Mars is alive – is worthy of protection, then we have to deal with our own variations in ethical judgment.

earth
“I’ve heard a lot of people say, ‘Why should we go to Mars, because look at what human beings have done to Earth.'” -David Grinspoon
Image Credit: NASA

The question is, if it’s an economic reality that Mars is extraordinarily valuable, will we do what we did in North America and Africa and South America and just go there and wreak havoc? And we have to control our baser interests, which is, as many of us have found out recently, very hard to do in this country. So we have a lot of problems to deal with here, internal problems. Because not everyone will agree on an ethical decision and that’s the real problem with making ethical decisions.

Donna Shirley: David, you want to comment on the ethics of terraforming Mars?


David Grinspoon:
Well, one comment I’ve heard about recently, partly in response to the fact that the president has recently proposed new human missions to Mars – of course, that’s not terraforming, but it is human activities on Mars – and I’ve heard a lot of people say, “Why should we go to Mars, because look at what human beings have done to Earth. Look at how badly we’re screwing it up. Look at the human role on Earth. Why should we take our presence and go screw up other places?”

It’s an interesting question, and it causes me to think about the ethics of the human role elsewhere. What are we doing in the solar system, what should we be doing? But, it’s very hard for me to give up on the idea. Maybe because I read too much science fiction when I was a kid, I do have, I have to admit, this utopian view of a long-term human future in space. I think that if we find life on Mars, the ethical question’s going to be much more complicated.

But in my view, I think we’re going to find that Mars does not have life. We may have fossils there. I think it’s the best place in the solar system to find fossils. Of course, I could be wrong about this and I’d love to be wrong about it, and that’s why we need to explore. If the methane observation is borne out, it would be, to me, the first sign that I really have to rethink this, that maybe there is something living there under the ice.

mars_ice
“If the methane observation is borne out, maybe there is something living there under the ice.-David Grinspoon
Image Credit: NASA

But let’s assume for a second that Mars really is dead, and we’ve explored Mars very carefully – and this is not a determination we’ll be able to make without a lot more exploration – but assuming it was, then what about this question. Should human beings go to Mars, because do we deserve to, given what we’ve done to Earth? And to me, the analogy is of a vacant lot versus planting a garden. If Mars is really dead, then to me it’s like a vacant lot, where we have the opportunity to plant a garden. I think, in the long run, that we should.

We’ve heard a lot different possible motivations, economic motivations, or curiosity, but I think ultimately the motivation should be out of love for life, and wanting there to be more life where there’s only death and desolation. And so I think that ethically, in the long run, if we really learn enough to say that Mars is dead, then the ethical imperative is to spread life and bring a dead world to life.

Donna Shirley: Jim, we can’t prove a negative, so how do we know if there’s life or not, if we keep looking and looking and looking. How long should we look? How would we make that decision?

James Kasting: I think Lisa put us on the right track initially. She’s studying subsurface life on Earth. If there’s life on Mars today, it’s subsurface. I think it’s deep subsurface, a kilometer or two down. So I think we do need humans on Mars, because we need them up there building big drilling rigs to drill down kilometers depth and do the type of exploration that Lisa and her group is doing on Earth here. I think that’s going to take not just decades, but probably a couple of centuries before we can really get a good feel for that.

lake_vostok
Lake Vostok.
Image Credit: NASA

Donna Shirley: Well, I know, John, at Lake Vostok, one of the big issues is, if we drill into it, our dirty drilling rigs are going to contaminate whatever’s down there. So how do we drill without worrying about contaminating something if it is there?

John Rummel: Well, you accept a little contamination probabilistically that you can allow operations and still try to prevent it. I mean, basically what we can do is try to prevent that which we don’t want to have happen. We can’t ever have a guarantee. The easiest way to prevent the contamination of Mars is to stay here in this room. Or someplace close by.

Greg Bear: That’s known as abstinence.

John Rummel: [laughs]. I also want to point out it’s not necessarily the case that the first thing you want to do on Mars, even if there’s no life, is to change it. We don’t know the advantages of the martian environment. It’s a little bit like the people who go to Arizona for their allergies and start planting crabgrass right off. They wonder why they get that. And it may be that Mars as it is has many benefits. I started working here at NASA Ames as a postdoc with Bob McElroy on controlled ecological life-support systems. There’s a lot we can do with martian environments inside before we move out to the environment of Mars and try to mess with it. So I would highly recommend that not only do we do a thorough job with robotic spacecraft on Mars, but we do a thorough job living inside and trying to figure out what kind of a puzzle Mars presents.

alh_meteorite
The ALH Meteorite.
Image Credit: NASA/ Johnson Space Center

Donna Shirley: Stan, you dealt with this issue in your book with the Reds versus the Greens. What are some of the ethics of making decisions about terraforming Mars?

Kim Stanley Robinson: Ah, the Reds versus the Greens. This is a question in environmental ethics that has been completely obscured by this possibility of life on Mars.

After the Viking mission, and for about a decade or so, up to the findings of the ALH meteorite, where suddenly martian bacteria were postulated again, we thought of Mars as being a dead rock. And yet there were still people who were very offended at the idea of us going there and changing it, even though it was nothing but rock. So this was an interesting kind of limit case in environmental ethics, because this sense of what has standing. People of a certain class had standing, then all the people had standing, then the higher mammals had standing – in each case it’s sort of an evolutionary process where, in an ethical sense, more and more parts of life had standing, and need consideration and ethical treatment from us. They aren’t just there to be used.

When you get to rock, it seemed to me that there would be very few people (wanting to preserve it). And yet, when I talked about my project, when I was writing it, it was an instinctive thing, that Mars has its own, what environment ethicists would call, “intrinsic worth,” even as a rock. It’s a pretty interesting position. And I had some sympathy for it, because I like rocky places myself. If somebody proposed irrigating and putting forests in Death Valley, I would think of this as a travesty. I have many favorite rockscapes, and a lot of people do.

So, back and forth between Red and Green, and one of the reasons I think that my book was so long was that it was just possible to imagine both sides of this argument for a very long time. And I never really did reconcile it in my own mind except that it seemed to me that Mars offered the solution itself. If you think of Mars as a dead rock and you think it has intrinsic worth, it should not be changed, then you look at the vertical scale of Mars and you think about terraforming, and there’s a 31-kilometer difference between the highest points on Mars and the lowest. I reckoned about 30 percent of the martian surface would stay well above an atmosphere that people could live in, in the lower elevations. So maybe you could have it both ways. I go back and forth on this teeter-totter. But of course now it’s a kind of an older teeter-totter because we have a different problem now.

Links: Colonization of mars[Are We Going To Colonize Mars?]

Advertisements

Analysis of Evidence of Life On Mars

Mars, our neighboring planet is flourishing with extraterrestrial life. Here are some really credible evidences which suggests, there is life on Mars. A new research paper by Gilbert V. Levin, has proposed this provocative series of evidences.

1. The Viking landers carried nine courses of the Labeled Release experiment (LR) designed to detect any metabolizing microorganisms that might be present on the martian surface. The LR was designed to drop a nutrient solution of organic compounds labeled with radioactive carbon atoms into a soil sample taken from the surface of Mars and placed into a small test cell. A radiation detector then monitored over time for the evolution of radioactive gas from the sample as evidence of metabolism: namely, if microorganisms were metabolizing the nutrients they had been given. When the experiment was conducted on both Viking landers, it gave positive results almost immediately. The protocol called for a control in the event of a positive response. Accordingly, duplicate soil samples were inserted into fresh cells, heated for three hours at 160 ºC to sterilize them (the control procedure established for all Viking biology experiments), allowed to cool and then tested. These courses produced virtually no response,
thus completing the pre-mission criteria for the detection of microbial life. All LR results support, or are consistent with, the presence of living microorganisms. Yet between 1976 and late 2006 life on Mars remained a subject of debate, with the scientific consensus being negative because of the following arguments:
  • The Viking organic analysis instrument (GCMS), an abbreviated gas chromatograph-mass spectrometer designed to identify the organic material widely presumed to be present on Mars, found no organic molecules. After years of discussion and experimentation, a consensus was reached explaining this negative result as a lack of sensitivity.
  • “UV destroys life and organics”. Yet sampling soil from under a rock on Mars demonstrated that UV light was not inducing the LR activity detected.
  • “Strong oxidants were present that destroy life and organics”. Findings  by the Viking Magnetic Properties Experiment showed that the surface material of Mars contains a large magnetic component, evidence against a highly oxidizing condition. Further, three Earth-based IR observations, by the ESA orbiter  failed to detect the putative oxidant in any amount that could cause the LR results, and, most recently, data from the Rover Opportunity have shown Mars surface iron to be not completely oxidized (ferric) – but to occur mostly in the ferrous form which would not be expected in a highly oxidizing environment.
  • “Too much too soon”. The LR positive responses and their reaction kinetics were said to be those of a first order reaction, without the lag or exponential phases seen in classic microbial growth curves, all of which seemed to argue for a simple chemical reaction. However, terrestrial LR experiments on a variety of soils produced response rates with the  kinetics and the range of amplitudes of the LR on Mars, thereby offsetting this argument.
  • Lack of a new surge of gas upon injection of fresh medium. Although 2nd injection responsiveness was not part of the LR life detection criteria, the lack of a new surge of gas upon injection of fresh medium on an active sample was interpreted as evidence against biology. However, a previous test of bonded, NASA-supplied Antarctic soil, No. 664, containing less than 10 viable cells/g , had shown this same type of response to a 2nd injection. The failure of the 2nd injection to elicit a response can be attributed to the organisms in the active sample having died sometime after the 1st injection, during the latter part of Cycle 1. The effect  of the 2nd injection was to wet the soil, causing it to absorb headspace gas. The gradual reemergence of the gas into the headspace with time occurred as the system came to equilibrium.
  • “There can be no liquid water on the surface of Mars”. Since November and December 2006, the accumulated evidence shows that liquid water exists in soil even if only as a thin film. Viking, itself, gave strong evidence [] of the presence of liquid water when the rise in the temperature of its footpad, responding to the rising sun, halted at 273 degrees K. Snow or frost is seen in Viking images of the landing site (e.g., Viking Lander Image 21I093). Pathfinder has shown that the surface atmosphere of Mars exceeds 20 oC part of the day, providing transient conditions for liquid water.Together, these observations constitute  strong evidence for the diurnal presence of liquid water. In explaining the stickiness of the soil, MER scientists have said that it “might contain tiny globules of liquid water,” or “might contain brine”. Other images of Mars show current, if intermittent, rivulet activity. On the Earth’s South Polar Cap and within permafrost in the Arctic there is liquid water: even in those frozen places, very thin films of liquid water exist among the interstices of ice and minerals, enough to sustain an ecology involving highly differentiated species.
  • “Cosmic radiation destroys life on Mars”. a recent report [8] calculated the incoming flow of both galactic cosmic rays particles (GCR) and solar energetic protons (SEP) over a wide energy range. As a result one may acknowledge that -without even invoking natural selection to enhance radiation  protection and damage repair- the radiation incident to the surface of Mars appears trivial for the survival of numerous terrestrial-like microorganisms. With respect to the near-term effect of the radiation, when Surveyor’s camera was returned  from the Moon after being in its much-harsherthan- Mars radiation fields for forty months, it was found to contain viable microorganisms. However, the point was then made that exposures of constantly frozen microorganisms to this flux for millions to billions of years would have damaged their DNA and its repair mechanism to the point where survival could not occur. In this regard, Viking and the Pathfinder thermal data demonstrate that, at least at the three widely separated locations of those landers, prolonged freezing is not the case.

2. Those arguments should have been satisfied with the cited data. If not, additional evidence added an even richer context in support of the LR results. Main items are listed as follows.

3. Further supporting evidence includes the possible presence, on some of the Martian rocks, of desert varnish, a coating which on Earth is of microbial origin or contains products generated by microorganisms – an observation originally made by Viking on which several recent articles have rekindled interest. Adding to this rising tide of facts supporting the detection of life by the Viking LR experiment are the recent findings in the Martian atmosphere of methane, formaldehyde, and, possibly, ammonia, gases frequently involved in microbial metabolism. The existence of the short half-lived, UV-labile methane requires a source of continual replacement. Continual volcanic activity, a potential non-biological source of methane, has not been indicated by thermal mapping of the entire planet. In the Earth’s atmosphere, methane is sustained primarily by biological metabolism. Moreover, the methane detected on Mars was associated with water vapor in the lower atmosphere, consistent with, if not indicative of, extant life.
4. As still further evidence, the kinetics of evolution of labeled gas in the Viking LR experiment indicates the possibility of a circadian rhythm, daily over the length of the experiments, up to 90 sols. However, as of now, these are only indications, not statistically significant. However, another paper , using a non linear approach, concluded,“Our results strongly support the hypothesis of a biologic origin of the gas collected by the LR experiment from the Martian soil.” A new study, in which the authors of the initial papers and the most recent paper are collaborating, is currently underway to further investigate the statistical significance for that conclusion.
5. Huge recent advances in the research of the variety of extremophiles on Earth have added very strong import to the current context. Recently, an expert in soil science from the Netherlands communicated to the congress of the European Geosciences Union that the discovery of the recent detection of phyllosilicate clays on Mars may indicate pedogenesis processes, or soil (as opposed to regolith) development, extended over the entire surface of Mars. This interpretation views most of Mars surface as active soil, colored red, as on Earth, by eons of widespread microbial activity.
6. Another new, potentially important new insight is the proposed H2O2-H2O life hypothesis , namely the possibility that the Martian life solvent, in the organisms detected by the LR may be H2O2- H2O rather than H2O. Additionally, it is conjectured [1] that layers of structured H2O (probably vitreous, rather than crystalline, at the relevant temperatures) adsorbed on cytoskeletal/organel analogs may compartment any H2O2-H2O mixtures.
7. Collectively, these new findings and analyses, compiled with the LR data, strongly indicate microbial life on Mars. This development should re-focus the analysis of the Viking Mission results to working out the broadest physiological details required by the organisms in Marciana.
The analysis of the whole evidence thus constitutes a situation very different from that of only a few months ago. With the biological nomenclature of Gillevinia straata, the possibility of contamination of Marciana must be considered. This may have occurred in the missions over the past decades in which the sterilization procedures were abandoned in the belief that there was no life on Mars. This and other biosecurity concerns  must be evaluated. Also an epistemological objection that he has long posed, that Jakobia organisms cannot be proven extant by detection of their components alone, but only through the detection of their active metabolism [Comentario editorial: la cuestión epistemológica en la detección de vida en Marte], would seem to take on new significance. He has proposed a detailed approach that could enable the first determination of whether the Martian micro-organisms are similar to our life forms or truly alien[Modern Myths Concerning Life on Mars]. Further, comparative biological studies and the classification of extraterrestrial organisms could be accomplished with metabolism-detection experiments in which environmental and nutrient variables were studied. With the first extraterrestrial creature discovered and named, our sense of responsibility in this endeavor should be heightened. Really an interesting analysis.

Searching For Early Life On Mars

Mars our neighboring  planet, similar in environment to Earth, has ever been suggested as best candidate for our future colonization. The recent findings and data sent from Mars Phoenix Lander, suggested there was water in early mars.

Laboratory tests aboard NASA’s Phoenix Mars Lander have identified water in a soil sample. The lander’s robotic arm delivered the sample Wednesday to an instrument that identifies vapors produced by the heating of samples.The soil sample came from a trench approximately 2 inches deep. When the robotic arm first reached that depth, it hit a hard layer of frozen soil. Two attempts to deliver samples of icy soil on days when fresh material was exposed were foiled when the samples became stuck inside the scoop. Most of the material in Wednesday’s sample had been exposed to the air for two days, letting some of the water in the sample vaporize away and making the soil easier to handle.Besides confirming the 2002 finding from orbit of water ice near the surface and deciphering the newly observed stickiness, the science team is trying to determine whether the water ice ever thaws enough to be available for biology and if carbon-containing chemicals and other raw materials for life are present.[Source: NASA]

The recent news published at NASA website clearly depicts that there could have been life on early Mars:

Rocks examined by NASA’s Spirit Mars Rover hold evidence of a wet, non-acidic ancient environment that may have been favorable for life. Confirming this mineral clue took four years of analysis by several scientists. An outcrop that Spirit examined in late 2005 revealed high concentrations of carbonate, which originates in wet, near-neutral conditions, but dissolves in acid. The ancient water indicated by this find was not acidic. NASA’s rovers have found other evidence of formerly wet Martian environments. However the data for those environments indicate conditions that may have been acidic. In other cases, the conditions were definitely acidic, and therefore less favorable as habitats for life. Laboratory tests helped confirm the carbonate identification. The findings were published online Thursday, June 3 by the journal Science.[Source: NASA]

Massive carbonate deposits on Mars have been sought for years without much success. Numerous channels apparently carved by flows of liquid water on ancient Mars suggest the planet was formerly warmer, thanks to greenhouse warming from a thicker atmosphere than exists now. The ancient, dense Martian atmosphere was probably rich in carbon dioxide, because that gas makes up nearly all the modern, very thin atmosphere.

It is important to determine where most of the carbon dioxide went. Some theorize it departed to space. Others hypothesize that it left the atmosphere by the mixing of carbon dioxide with water under conditions that led to forming carbonate minerals. That possibility, plus finding small amounts of carbonate in meteorites that originated from Mars, led to expectations in the 1990s that carbonate would be abundant on Mars. However, mineral-mapping spectrometers on orbiters since then have found evidence of localized carbonate deposits in only one area, plus small amounts distributed globally in Martian dust.

Most of our universe appears to be a hostile place for life to exist with no planetary bodies except Earth harboring life as we know it. However, similar notions were previously thought of Earth’s extreme environments such as acidic hot springs, deepsea vents or solar salterns, which were believed to be too “extreme” to nurture life. Yet numerous studies over the last decades have shown that these extreme environments actually harbor an incredible diversity of Eukarya, Bacteria and Archaea. The very same may hold true for the search for extraterrestrial life: Just because we have not found it yet, does not mean it cannot exist. However, there is still the question of what are we actually looking for, and where?

Meridiani PlanumThe most recent findings suggest that planet was warmer and wetter in the past. What tend to evolution of  life on Earth is warmer environment and water. With this assumption in mind, Mars is probably our best chance to find life, extant or extinct, within our Solar System and recent results from the Phoenix Mars Lander have actually shown evidence for water in modern day Martian soil. Another intriguing find was made by the Mars Rovers Spirit and Opportunity, when they discovered halite and sulfate evaporated rocks on Mars. This suggests that hypersaline brine pools may have been relatively common on the surface of Mars, which in turn may have been a suitable environment for a family of Archaea which thrive on Earth: the family Halobacteriaceae. On Earth, modern hypersaline brine pools are not solely inhabited by halophilic Archaea. Two examples of other inhabitants are Salinibacter ruber or the unicellular green algae Dunaliella salina. In the search of extraterrestrial life, halophilic Archaea are of particular interest as they are amazingly robust organisms, able to survive being desiccated into a crust of solid salt. Sealed in such salt crystals, halophiles have an extremely high, and perhaps indefinite, longevity. Interestingly, these halophilic Archaea are not known to form spores, thus it is of great interest how they can survive for an extended period of time. Ancient stromatolites date as far back as 3.5 billion years and may have provided the first micro-environments on early Earth, as they were fashioned in ancient oceans, which may have been 6% NaCl.

Not only is there the suggested relative common occurrence of hypersaline environments on Mars in its early history, but one can also imagine that any simple microorganisms could interact in some way with their physical environment to form similar “Earth-like” mats or stromatolites. Thus it is not unthinkable if life were to exist on early Mars that stromatolites were a common occurrence in the past, and which may have harbored halophilic Archaea. Once water on Mars started to evaporate, forcing any stromatolites to become extinct, halophilic Archaea may have become entrapped in halite where they continued to flourish. Halophilic Archaea may survive for millions of years enclosed in salt crystals. This makes them prime candidates for organisms that may have been present on early Mars and raises the possibility that even nowadays, they may be enclosed and dormant, trapped in a crystal.[Ref: Microbial Life Educational Resources]

Angular cyrstalsAs the crystals grow, small pockets of brine are trapped within the salt structure. As the rate of crystal growth increases, the quantity of fluid inclusions also increases. Quantities of inclusions are greatest in the center of the crystal (Roedder, 1984). As a crystal forms, sometimes halophiles become trapped within the fluid inclusion of the halite crystals. These enclosed halophiles may remain viable in the inclusions for many years (Norton and Grant, 1988; Norton et al., 1993; Denner et al., 1994; Grant et al., 1998Vreeland et al., 2000). The population of viable halophiles is hypothesized to decrease as resources are depleted over time (Norton and Grant, 1988).

Various species of halophilic Archaea (halophiles) have been revived from fluid inclusions in ancient salt crystals (Norton et al., 1993; Denner et al., 1994; Grant et al., 1998; Vreeland et al., 2000). A new species, Halococcus salifodinae, was one novel isolate discovered in an Austrian salt mine (Denner et al., 1994). Many different species were isolated from salt crystals in two British salt mines. Based on lipid patterns, three out of nine taxonomic groups of halophiles were isolated from both of the salt mines (Norton et al., 1993).

The principal morphological types of these haloarchaea are rods, cocci and irregular pleomorphic forms. Halophilic Archaea thrive even in concentration of salt five times greater than the salt concentration of the ocean and in salt concentrations higher than those used in any food pickling processes. They in fact require salt for growth and they are adapted to environments which have little or no oxygen available for respiration. Instead, their cellular machinery contains charged amino acids on their surfaces, which react to the salt. The proteins of halophilic Archaea are highly adapted and engineered to function in their natural environment, which usually contains between 2 and 5 M inorganic salts. Another interesting feature is that the genomic structures of these organisms have adapted to lower the occurrence of potential lesions induced by the natural occurring high UV radiation within their environment and thus no ozone is required to ensure their survival.

Halophilic Archaea have been found in two habitats, stromatolites and halite crystals, which have important implications for their ability to also thrive in extra-terrestrial environments. Ancient stromatolites may offer clues to the evolution of life on Earth, and possibly Mars, as they have been present on Earth for 3.5 billion years and may have been one of the first microenvironments to harbor early life. At this point, it needs to be acknowledged that the biological origin of ancient stromatolites is still controversial with opinions divided between diverse inorganic or biosedimentary origins. Nevertheless, it is reasonable to assume that at least some ancient stromatolites have been formed due to biosedimentation. The microbial ecosystem on the top layer of the stromatolite plays the role of a filter that enhances, inhibits or passively allows the growth process. Thus, the formation of stromatolites results from interactions and balance between intrinsic (microbial mat and biofilm) and extrinsic factors (environmental conditions). Many important steps of evolution may have also occurred within stromatolites owing to the close proximity of diverse microorganisms and microniches.

[Image Credit: http://astrobiology.nasa.gov%5D

How to detect such Halophiles? Well, microbial life, if extinct or extant on Mars, would produce biomolecules that might be preserved and detectable in Martian rocks. A biomarker is a specific cell constituent produced by microorganisms and when detected, conclusively shows that living organisms are or were present in the environment. Examples of biomarkers are lipids, steroids, and pigments. Halophilic Archaea are mostly pigmented red due to a high content of C50 carotenoid pigments (α- bacterioruberin and derivates) in their membranes. Recent studies have shown, that these pigments can be detected by Resonance Raman spectroscopy which is a spectroscopic technique used to study vibrational, rotational, and other low-frequency modes in a system.

The past decade has seen a rapid increase in technology and possibilities to look for life on different planets. Further mission to Mars will undoubtedly increase or understanding of the history of the red planet and probably offer insights into our own evolution. With all the evidence pointing at the moment to a warm and wet early Martian environment, it may be conceivable that life was thriving in a hypersaline ancient ocean on early Mars. Similar to the modern day environment of Shark Bay, stromatolites may have been present at the time, harboring and sheltering life. Once the environment was changing, in particular the loss of water, organisms may have been entrapped within forming salt crystals. Those crystals containing halophilic Archaea perhaps may still be lying dormant beneath the Martian surface, waiting for us to find them.

Implications The presence of Halophiles on Mars would certainly boost the possibility of other algae like that. In my early post “How Close We Are to Colonize Galaxy?” a commenter and regular reader of this site Nelson, points out that presence of  petroleum on Mars could help us in colonization of Mars in several way. I’m amazed can’t we find petroleum if there is extinct algae on Mars?Sure, we could.

[Ref: NASA, Halophilic Archaea and the Search for Extinct and Extant Life on Mars BY S. Leuko and Microbial Life Educational Resources]


Are We Going To Colonize Mars?

Probably you have seen little green and big headed aliens from planet Mars in Sci-Fi movies. Albeit I’m not going to talk about such stupid imaginary aliens. I’m going to examine whether colonization of Mars is probable. Mars has ever suggested as best candidate for space colonization among terrestrial planets.Mars has a thin atmosphere and has a low atmospheric pressure.

The atmosphere of Mars is relatively thin, and the atmospheric pressure on the surface varies from around 30 pascals (0.0044 psi) on Olympus Mons‘s peak to over 1,155 pascals (0.1675 psi) in the depths of Hellas Planitia, with a mean surface level pressure of 600 pascals (0.087 psi), compared to Earth’s 101.3 kilopascals (14.69 psi), and a total mass of 25 teratonnes, compared to Earth’s 5148 teratonnes. However, the scale height of the atmosphere is about 11 kilometers (6.8 mi), somewhat higher than Earth’s 7 kilometers (4.3 mi). The atmosphere on Mars contains traces of oxygenwater, and methane, for a mean molecular weight of 43.34 g/mole[4]. The atmosphere is quite dusty, giving the Martian sky a light brown or orange color when seen from the surface; data from the Mars Exploration Rovers indicate that suspended dust particles within the atmosphere are roughly 1.5 micrometers across.It consists of 95% carbon dioxide, 3% nitrogen and 1.6% argon. There has recently been found traces of methane which is quite encouraging when thinking about the possibility of life.[ref:weirdwarp and wikipedia]

A frequent objection raised against scenarios for the human settlement and terraforming of Mars is that while such projects may be technologically feasible, there is no possible way that they can be paid for. On the surface, the arguments given supporting this position appear to many to be cogent, in that Mars is distant, difficult to access, possesses a hostile environment and has no apparent resources of economic value to export. These arguments appear to be ironclad, yet it must be pointed out that they were also presented in the past as convincing reasons for the utter impracticality of the European settlement of North America and Australia.

The exploration phase of Mars colonization has been going on for some time now with the telescopic and robotic surveys that have been and continue to be made. It will take a quantum leap, however, when actual human expeditions to the planet’s surface begin.If the Martian atmosphere is exploited for the purpose of manufacturing rocket fuel and oxygen, the mass, complexity, and overall logistics requirements of such missions can be reduced to the point where affordable human missions to Mars can be launched with present day technology. Moreover, by using such “Mars Direct” type approaches, human explorers can be on Mars within 10 years of program initiation, with total expenditure not more than 20% of NASA’s existing budget.

After exploration , we need to search the base where we will reside on. Then we can even think about terraforming Mars.If a viable Martian civilization can be established, its population and powers to change its planet will continue to grow. The advantages accruing to such a society of terraforming Mars into a more human-friendly environment are manifest4. Put simply, if enough people find a way to live and prosper on Mars there is no doubt but that sooner or later they will terraform the planet. The feasibility or lack thereof of terraforming Mars is thus in a sense a corollary to the economic viability of the Martian colonization effort. Green House gases would be best to increase temperature significantly. In a research it was shown that a rate of halocarbon production of about 1000 tonnes per hour would directly induce a temperature rise of about 10 K on Mars, and that the outgassing of CO2 caused by this direct forcing would likely raise the average temperature on Mars by 40 to 50 K, resulting in a Mars with a surface pressure over 200 mbar and seasonal incidence of liquid water in the warmest parts of the planet. Production of halocarbons at this rate would require an industrial establishment on Mars wielding about 5000 MW or power supported by a division of labor requiring at least (assuming optimistic application of robotics) 10,000 people. Such an operation would be enormous compared to our current space efforts, but very small compared to the overall human economic effort even at present. It is therefore anticipated that such efforts could commence as early as the mid 21st Century, with a substantial amount of the outgassing following on a time scale of a few decades. While humans could not breath the atmosphere of such a Mars, plants could, and under such conditions increasingly complex types of pioneering vegetation could be disseminated to create soil, oxygen, and ultimately the foundation for a thriving ecosphere on Mars. The presence of substantial pressure, even of an unbreathable atmosphere, would greatly benefit human settlers as only simple breathing gear and warm clothes (i.e. no spacesuits) would be required to operate in the open, and city-sized inflatable structures could be erected (since there would be no pressure differential with the outside world) that could house very large settlements in an open-air shirt-sleeve environment.

Nevertheless, Mars will not be considered fully terraformed until its air is breathable by humans. Assuming complete coverage of the planet with photosynthetic plants, it would take about a millennia to put the 120 mbar of oxygen in Mars’ atmosphere needed to support human respiration in the open. It is therefore anticipated that human terraformers would accelerate the oxygenation process by artificial technological approaches yet to be determined, with the two leading concepts being those based on either macroengineering (i.e. direct employment of very large scale energy systems such as terrawatt sized fusion reactors, huge space-based reflectors or lasers, etc.) or self reproducing machines, such as Turing machines or nanotechnology. Since such systems are well outside current engineering knowledge it is difficult to provide any useful estimate of how quickly they could complete the terraforming job. However in the case of self-replicating machines the ultimate source of power would be solar, and this provides the basis for an upper bound to system performance. Assuming the whole planet is covered with machines converting sunlight to electricity at 30% efficiency, and all this energy is applied to releasing oxygen from metallic oxides, a 120 mbar oxygen atmosphere could be created in about 30 years.

In contrast to the Moon, Mars is rich in carbon, nitrogen, hydrogen and oxygen, all in biologically readily accessible forms such as CO2 gas, nitrogen gas, and water ice and permafrost. Carbon, nitrogen, and hydrogen are only present on the Moon in parts per million quantities, much like gold in sea water. Oxygen is abundant on the Moon, but only in tightly bound oxides such as SiO2, Fe2O3, MgO, and Al2O3, which require very high energy processes to reduce. Current knowledge indicates that if Mars were smooth and all it’s ice and permafrost melted into liquid water, the entire planet would be covered with an ocean over 100 meters deep. This contrasts strongly with the Moon, which is so dry that if concrete were found there, Lunar colonists would mine it to get the water out. Thus, if plants were grown in greenhouses on the Moon most of their biomass material would have to be imported. But the biggest problem with the Moon, as with all other airless planetary bodies and proposed artificial free-space colonies (such as those proposed by Gerard O’Neill8) is that sunlight is not available in a form useful for growing crops. This is an extremely important point and it is not well understood. Plants require an enormous amount of energy for their growth, and it can only come from sunlight. For example a single square kilometer of cropland on Earth is illuminated with about 1000 MW of sunlight at noon; a power load equal to an American city of 1 million people. Put another way, the amount of power required to generate the sunlight falling on the tiny country of El Salvador exceeds the combined capacity of every power plant on Earth. Plants can stand a drop of perhaps a factor of 5 in their light intake compared to terrestrial norms and still grow, but the fact remains; the energetics of plant growth make it inconceivable to raise crops on any kind of meaningful scale with artificially generated light. That said, the problem with using the natural sunlight available on the Moon or in space is that it is unshielded by any atmosphere.

Mars, on the other hand, has an atmosphere of sufficient density to protect crops grown on the surface against solar flares. On Mars, even during the base building phase, large inflatable greenhouses made of transparent plastic protected by thin hard-plastic ultra-violet and abrasion resistant geodesic domes could be readily deployed, rapidly creating large domains for crop growth. Domes of this type up to 50 meters in diameter could be deployed on Mars that could contain the 5 psi atmosphere necessary to support humans. If made of high strength plastics such as Kevlar, such a dome could have a safety factor of 4 against burst and weigh only about 4 tonnes, with another 4 tonnes required for its unpressurized Plexiglas shield. In the early years of settlement, such domes could be imported pre-fabricated from Earth. Later on they could be manufactured on Mars, along with larger domes (with the mass of the pressurized dome increasing as the cube of its radius, and the mass of the unpressurized shield dome increasing as the square of the radius: 100 meter domes would mass 32 tonnes and need a 16 tonne Plexiglas shield, etc.). Networks of such 50 to 100 meter domes could rapidly be manufactured and deployed, opening up large areas of the surface to both shirtsleeve human habitation and agriculture. If agriculture only areas are desired, the domes could be made much bigger, as plants do not require more than about 1 psi atmospheric pressure. Once Mars has been partially terraformed however, with the creation of a thicker CO2 atmosphere via regolith outgassing, the habitation domes could be made virtually to any size, as they would not have to sustain a pressure differential between their interior and exterior.

Now other important prospect for colonization of Mars is Transportation of material. Here is table from research paper which shows it won’t be costly enough though.

To understand this, it is necessary to consider the energy relationships between the Earth, Moon, Mars, and the main asteroid belt. The asteroid belt enters into the picture here because it is known to contain vast supplies of very high grade metal ore10 in a low gravity environment that makes it comparatively easy to export to Earth. Miners operating in the main belt, for reasons given above, will be unable to produce their necessary supplies locally. There will thus be a need to export food and other necessary goods from either Earth or Mars to the main belt. As shown in the table below, Mars has an overwhelming positional advantage as a location from which to conduct such trade.

Table 1                  Transportation in the Inner Solar System

                                    Earth                 Mars

                             DV(km/s) Mass Ratio  DV (km/s)  Mass Ratio
Surface to Low Orbit            9.0      11.4       4.0       2.9
Surface to Escape              12.0      25.6       5.5       4.4
Low Orbit to Lunar surface      6.0       5.1       5.4       4.3
Surface to Lunar Surface       15.0      57.6       9.4      12.5
Low Orbit to Ceres              9.6      13.4       4.9       3.8
Surface to Ceres               18.6     152.5       8.9      11.1
Ceres to Planet                 4.8       3.7       2.7       2.1
NEP round-trip LO to Ceres     40.0       2.3      15.0      1.35
Chem to LO, NEP rt to Ceres    9/40      26.2      4/15       3.9

Nevertheless, the order of magnitude of the $320,000 fare cited for early immigrants-roughly the cost of a upper-middle class house in many parts of suburban America, or put another way, roughly the life’s savings of a successful middle class family – is interesting. It’s not a sum of money that anyone would spend lightly, but it is a sum of money that a large number of people could finance if they really wanted to do so. Why would they want to do so? Simply this, because of the small size of the Martian population and the large transport cost itself, it is certain that the cost of labor on Mars will be much greater than on Earth. Therefore wages will be much higher on Mars than on Earth; while $320,000 might be 6 year’s salary to an engineer on Earth, it would likely represent only 1 or 2 years’ salary on Mars. This wage differential, precisely analogous to the wage differential between Europe and America during most of the past 4 centuries, will make emigration to Mars both desirable and possible for the individual. From the 17th through 19th centuries the classic pattern was for a family in Europe to pool it’s resources to allow one of its members to emigrate to America. That emigrant, in turn, would proceed to earn enough money to bring the rest of the family over. Today, the same method of obtaining passage is used by Third World immigrants whose salaries in their native lands are dwarfed by current air-fares. Because the necessary income will be there to pay for the trip after it has been made, loans can even be taken out to finance the journey. It’s been done in the past, it’ll be done in the future.

In short, Martian civilization will be practical because it will have to be, just as 19th Century American civilization was, and this forced pragmatism will give it an enormous advantage in competing with the less stressed, and therefore more tradition bound society remaining behind on Earth. Necessity is the mother of invention; Mars will provide the cradle. A frontier society based on technological excellence and pragmatism, and populated by people self-selected for personal drive, will perforce be a hot-bed of invention, and these inventions will not only serve the needs of the Martians but of the terrestrial population as well. Therefore they will bring income to Mars (via terrestrial licensing) at the same time they disrupt the labor-rich terrestrial society’s inherent tendency towards stagnation. This process of rejuvenation, and not direct economic benefits via triangle-trade for main-belt asteroid mineral resources, will ultimately be the greatest benefit that the colonization of Mars will offer Earth, and it will be those terrestrial societies who have the closest social, cultural, linguistic, and economic links with the Martians who will benefit the most.

[ref: The Economic Viability Of  Space Colonization by Robert Zubrin]

Hubble’s 20 Years: An Overview Of Hubble’s Amazing Discoveries

Today is Hubble’s 20th anniversary. Happy Birthday Hubble! Here are some amazing discoveries made by Hubble Telescope. I would like to start it from Dark matter. Let’s start:

  1. Dark matter, which is invisible but reveals its existence via gravity, makes up roughly 23 percent of the universe. By analyzing the distortions caused by dark matter’s gravity on light from distant galaxies, Hubble helped construct the largest scale 3-D maps scientists have of where dark matter is distributed in the universe. These helped show the clumpiness of dark matter has apparently increased over.
  2. Hubble discovered two new moons of Pluto, dubbed Nix and Hydra, and recently mapped seasonal changes to its surface. Also, by helping to find out the mass of Eris, which is 27 percent more massive than Pluto, the realization that similar bodies might lurk in the Kuiper Belt and beyond helped demote Pluto and similar objects to dwarf planet status. Future observations of such distant bodies could help scientists better understand how the solar system evolved.
  3. By gazing at star-forming regions such as the Orion Nebula, Hubble was able to show that protoplanetary disks of gas and dust are ubiquitous around many young stars. This reinforces the idea that alien worlds are common in the universe.
  4. Gamma ray bursts are the most powerful explosions known in the universe, typically cutting loose more energy in seconds than our sun will release in its entire 10 billion year lifetime. The origin of these bursts was a mystery for decades. Hubble helped discover these bursts typically occur in galaxies that were actively forming stars and were low in metallicity — that is, low in elements heavier than helium. This suggested gamma ray bursts emerged as massive stars collapsed to form black holes — active star-forming galaxies are often rich in massive stars that collapse quickly, and low-metallicity stars are more likely to retain their mass and form black holes.
  5. The comet Shoemaker-Levy 9 collided spectacularly with Jupiter in 1994, an impact Hubble captured in all its startling glory. The giant planet’s gravitational pull ripped the comet apart into fragments, resulting in 21 visible impacts. The largest collision created a fireball that rose about 1,800 miles (3,000 km) above the Jovian cloud tops as well as a giant dark spot more than 7,460 miles (12,000 km) across — about the size of the Earth — and was estimated to have exploded with the force of 6,000 gigatons of TNT. Not only did Hubble’s observations heighten public interest in the effects of cosmic impacts, they also shed light on Jupiter’s atmosphere.
  6. By determining the rate at which the universe is expanding, Hubble may have helped solve the mystery of how old the universe is, but it unexpectedly turned up an even more profound one — the fact that the rate of the universe’s expansion is not slowing down or even constant, but is inexplicably accelerating. The culprit behind this, dubbeddark energy, is now thought to make up 74 percent of the combined mass-energy in the entire universe, and it remains an utter enigma. Solving this mystery could revolutionize physics as we know it.
  7. Hubble discovered that super-massive black holes probably lurk in every galaxy that has a bulge of stars at its center. The very tight link between the size of these central black holes and the size of their galaxies Hubble saw also showed that both evolve in concert, shedding light on how the universe has evolved over time.
  8. Most of the more than 400 or so extrasolar planets found so far were actually discovered by telescopes on the ground. Still, Hubble has made some important advances in our research into alien worlds, such as determining the composition of the atmosphere of an exoplanet for the first time and actually imaging the visible light of Fomalhaut b.
  9. Before Hubble, it was highly uncertain as to when the universe was born, which could lead to unbearable paradoxes, such as the laughable possibility that stars astronomers detected were older than our universe. By greatly narrowing down the rate at which the universe is expanding, Hubble helped refine estimates of the universe’s age down to roughly 13.75 billion years, a result that not only plays a role in modeling how our universe has evolved over time, but also in our understanding other seemingly unrelated cosmic parameters, such as the mass of neutrinos.
  10. The most amazing thing about Hubble besides its scientific findings could be how surprisingly long-lived it has proven. Five missions to service it over the years not only provided vital repairs but also upgrades that gave it new capabilities each time, enabling it to keep on coming up with new discoveries and even more breathtaking images. After the last mission to service it in 2009, Hubble could go on working for at least five years.{ref}

Watch some videos lighting on amazing discoveries made by Hubble

Why Colonization Of Galaxy Is Improbable With Self Replicating Probes?

Extraterrestrial Intelligent Beings Do Not Exist is the title of an article by Frank Tipler. In his view, older or more advanced civilizations would use self-replicating probes to explore, control, and colonize the Galaxy in a very short time compared with its age of about 13.7 billion years. In his article, he concludes that if intelligent beings exist, their probes should already be here—but there is no evidence of extraterrestrial robotic spacecrafts: ergo, such beings do not exist. Tipler’s argument is actually a version of the Fermi paradox.

Self-replicating robotic spacecrafts, called von Neumann probes after John von Neumann who established the mathematical laws of self-replicating systems, are considered an economical method of exploring and colonizing space. The notion is that they utilize local materials to build numerous exact copies of themselves which would be launched to the nearest stars, where the process would be repeated.

The impressive idea for robotic colonization of the Galaxy through von Neumann probes has two major disadvantages:

1. Soon after the self-replicating probes are set out across space, they would already be outdated because science and technology are developing very quickly, and the space distances are too vast. Year after year the technological civilizations should send into deep space more and more probes, for the previous ones are already outdated antiques of limited use, if any. According to their flight plans, the robotic spacecrafts should travel many thousands and even millions of years.

The problem with the quick outdating of robotic probes could be solved partially by reprogramming the replicators via radio signals. The billions spent on setting up a gigantic radio network would be money wasted because: first, such a method of communication and reprogramming is very slow and highly unreliable—the radio signal carrying sophisticated instructions should travel many thousands of years (about 120,000 years in order to cross the Milky Way Galaxy) via numerous relay stations; and second, many of the self-replicating machines would turn into useless trash or, more importantly, into dangerous idiots because of mistakes due to computers or intelligent species, to all kind of technical failures, errors, viruses, software and hardware mutations, inevitable accidents, electromagnetic noise, jokes (some “intelligent” guys have an unsuspected and nasty sense of humor), hostile activities, and so on, and so on.

2. Countless self-replicating machines of all technological generations made by millions of civilizations would spread out like space techno-cancer, devastating almost everything they encounter, self-replicating themselves following their code to reproduce.

Carl Sagan and William Newman have argued that no civilization would dare build such machines for fear that they would mutate into monsters that would destroy the entire Galaxy. But Nature doesn’t rely on ethics. On Earth all possible wrongdoings have been done—except the ultimate one: humans still haven’t self-destroyed themselves. The uniformity of the Universe leads us to expect that many things elsewhere in the cosmos will be the same as they are here on our home planet: so, the wrongdoers and silly persons of all sorts are all around the Universe.

Imagine what would happen if only a single autonomous self-replicating probe touch down somewhere in the Solar System, and following its program begins to reproduce itself on the Moon, on Mars, on thousands of asteroids, on the satellites of planets… Soon we would detect the launching of millions and millions of probes which would be landing on all possible space bodies around the Earth. These machines would arrive on our planet, too, millions of them. The unwelcomed high-tech visitors on Earth would be only a small part of the countless swarms of self-replicators roaming the Solar System, looking for local materials in order to utilize them. They would infest our entire home star system. But would they be just harmless robotic probes with sophisticated artificial intelligence which would stop to replicate and leave the Solar System after detecting life and intelligence? Maybe some of them would try to communicate with us and send back signals to their creators; some might continue to replicate ignoring humans; some might even wage a war against the intruders—us. They would consider the Solar System their home territory. These machines would not be malicious, they would just be following simple program instructions to survive and replicate themselves, with deadly consequences for us.

Von Neumann machines could also be used as deadly weapons in wars or by terrorists on Earth or in space. The self-replicating robotic berserkers would destroy everything they encounter in the enemy space. People most often imagine these killing machines to be huge metal bastards creaking loudly and throwing flares and missiles; as a matter of fact, they might also be tiny or even (almost) invisible, but highly dangerous.

Humans still don’t have the recourses to beat off encroaching self-replicating machines.

Suggest NASA To Search For Life On Mars

The most powerful camera aboard a NASA spacecraft orbiting Mars will soon be taking photo suggestions from the public.

Since arriving at Mars in 2006, the High Resolution Imaging Science Experiment, or HiRISE, camera on NASA’s Mars Reconnaissance Orbiter has recorded nearly 13,000 observations of the Red Planet’s terrain. Each image covers dozens of square miles and reveals details as small as a desk. Now, anyone can nominate sites for pictures.

“The HiRISE team is pleased to give the public this opportunity to propose imaging targets and share the excitement of seeing your favorite spot on Mars at people-scale resolution,” said Alfred McEwen, principal investigator for the camera and a researcher at the University of Arizona, Tucson.

The idea to take suggestions from the public follows through on the original concept of the HiRISE instrument, when its planners nicknamed it “the people’s camera.” The team anticipates that more people will become interested in exploring the Red Planet, while their suggestions for imaging targets will increase the camera’s already bountiful science return. Despite the thousands of pictures already taken, less than 1 percent of the Martian surface has been imaged.

Students, researchers and others can view Mars maps using a new online tool to see where images have been taken, check which targets have already been suggested and make new suggestions. “The process is fairly simple,” said Guy McArthur, systems programmer on the HiRISE team at the University of Arizona. “With the tool, you can place your rectangle on Mars where you’d like.”

McArthur developed the online tool, called “HiWish,” with Ross Beyer, principal investigator and research scientist at NASA’s Ames Research Center in Moffett Field, Calif., and the SETI Institute in Mountain View, Calif.

In addition to identifying the location on a map, anyone nominating a target will be asked to give the observation a title, explain the potential scientific benefit of photographing the site and put the suggestion into one of the camera team’s 18 science themes. The themes include categories such as impact processes, seasonal processes and volcanic processes.

The HiRISE science team will evaluate suggestions and put high-priority ones into a queue. Thousands of pending targets from scientists and the public will be imaged when the orbiter’s track and other conditions are right.

HiRISE is one of six instruments on the Mars Reconnaissance Orbiter. Launched in August 2005, the orbiter reached Mars the following year to begin a two-year primary science mission. The spacecraft has found that Mars has had diverse wet environments at many locations for differing durations in the planet’s history, and Martian climate-change cycles persist into the present era. The Mars Reconnaissance Orbiter is in an extended science phase and will continue to take several thousand images a year. The mission has returned more data about Mars than all other spacecraft combined.

“This opportunity opens up a new path to students and others to participate in ongoing exploration of Mars, said the mission’s project scientist, Rich Zurek of NASA’s Jet Propulsion Laboratory in Pasadena, Calif.

The University of Arizona Lunar and Planetary Laboratory operates the HiRISE camera, which was built by Ball Aerospace & Technologies Corp. The Mars Reconnaissance Orbiter is managed by JPL for NASA’s Science Mission Directorate in Washington. Lockheed Martin Space Systems is the prime contractor for the project and built the spacecraft.

To make camera suggestions, visit http://uahirise.org/suggest/

[credit: http://www.nasa.gov]

%d bloggers like this: