FBI on The Existence of Aliens and UFOs

By Ste Webb
1. Part of the disks carry crews, others are under remote control.
2. Their mission is peaceful. The visitors contemplate settling on this plane.
3. These visitors are human-like but much larger in size.
4. They are not excarnate Earth people, but come from their ownworld.
5. They do NOT come from a planet as we use the word, but from an etheric planet which interpenetrates with our own and is not perceptible to us.
6. The bodies of the visitors, and the craft, automatically materialize on entering the vibratory rate of our dense matter.
7. The disks posses a type of radiant energy or a ray, which will easily disintegrate any attacking ship. They reenter the etheric at will, and so simply disappear from our vision, without trace.
8. The region from which they come is not the “astral plane”, but corresponds to the Lokas or Talas. Students of osoteric matters will understand these terms.
9. They probably can not be reached by radio, but probably can be by radar. if a signal system can be devised for that. (apparatus
Addendum: The Lokas are oval shape, fluted length oval with a heat-resistaning metal or alloy not yet known the front cage contains the controls, the middle portion a laboratory; the rear contains armament, which consists essentially of a powerful energy apparatus, perhaps a ray weapons.)

Advertisements

Why Send Humans to Mars? Looking Beyond Science

By Pabulo Henrique Rampelotto

In the last decade, the human exploration of Mars has been a topic of intense debate. Much of the focus of this debate lies on scientific reasons for sending, or not sending, humans to Mars. However, the more profound questions regarding why our natural and financial resources should be spent on such endeavor have not been addressed in a significant way. To be successful, the human exploration of Mars needs reasons beyond science to convince the public. People are far more interested in the short-term outcome of exploration than any nebulous long-term benefits. Finding the right balance of science and other factors is critical to convince taxpayers to part with $100 billion or more of their money over the next couple of decades to fund such endeavor. In the following, I briefly explain why the colonization of Mars will bring benefits for humans on Earth, looking beyond scientific reasons.

The engineering challenges necessary to accomplish the human exploration of Mars will stimulate the global industrial machine and the human mind to think innovatively and continue to operate on the edge of technological possibility. Numerous technological spin-offs will be generated during such a project, and it will require the reduction or elimination of boundaries to collaboration among the scientific community. Exploration will also foster the incredible ingenuity necessary to develop technologies required to accomplish something so vast in scope and complexity. The benefits from this endeavor are by nature unknown at this time, but evidence of the benefits from space ventures undertaken thus far point to drastic improvement to daily life and potential benefits to humanity as whole.

One example could come from the development of water recycling technologies designed to sustain a closed-loop life support system of several people for months or even years at a time (necessary if a human mission to Mars is attempted). This technology could then be applied to drought sufferers across the world or remote settlements that exist far from the safety net of mainstream society. The permanence of humans in a hostile environment like on Mars will require careful use of local resources. This necessity might stimulate the development of novel methods and technologies in energy extraction and usage that could benefit terrestrial exploitation and thus improve the management of and prolong the existence of resources on Earth.

The study of human physiology in the Martian environment will provide unique insights into whole-body physiology, and in areas as bone physiology, neurovestibular and cardiovascular function. These areas are important for understanding various terrestrial disease processes (e.g. osteoporosis, muscle atrophy, cardiac impairment, and balance and co-ordination defects). Moreover, medical studies in theMartian environment associated with researches in space medicine will providea stimulus for the development of innovative medical technology, much of which will be directly applicable to terrestrial medicine. In fact, several medical products already developed arespace spin-offs including surgically implantable heart pacemaker, implantable heart defibrillator, kidney dialysis machines, CATscans, radiation therapy for the treatment of cancer, among many others. Undoubtedly, all these space spin-offs significantly improved the human`s quality of life.

At the economical level, both the public and the private sector might be beneficiated with a manned mission to Mars, especially if they work in synergy. Recent studies indicate a large financial return to companies that have successfully commercialized NASA life sciences spin-off products. Thousands of spin-off products have resulted from the application of space-derived technology in fields as human resource development, environmental monitoring, natural resource management, public health, medicine and public safety, telecommunications, computers and information technology, industrial productivity and manufacturing technology and transportation. Besides, the space industry has already a significant contribution on the economy of some countries and with the advent of the human exploration of Mars, it will increase its impact on the economy of many nations. This will include positive impact on the economy of developing countries since it open new opportunities for investments.

To conclude, the human exploration oftthe red planet will significantly benefit all the humanity since it has the potential to improve human`s quality of life, provide economic returns to companies, stimulate the economy of many nations including developing countries and promote international collaboration.

Here is a series of ‘Analysis of Evidence of Life On Mars’…

Trapping the Antimatter!

Creating matter’s strange cousin antimatter is tricky, but holding onto it is even trickier. Now scientists are working on a new device that may be able to trap antimatter long enough to study it.
Antimatter is like a mirror image of matter. For every matter particle (say an electron, for example), a matching antimatter particle is thought to exist (in this case, a positron) with the same mass, but an opposite charge.

The problem is that whenever antimatter comes into contact with regular matter, the two annihilate. So any container or bottle made of matter that attempts to capture antimatter inside would be instantly destroyed, along with the precious antimatter sample one tried to put inside the bottle.

Physicist Clifford Surko of the University of California, San Diegois hard at work to overcome that issue. He and his colleagues are building what they call the world’s largest trap for low-energy positrons – a device they say will be able to store more than a trillion antimatter particles at once.

The key is using magnetic and electric fields, instead of matter, to construct the walls of an antimatter “bottle.”

“We are now working to accumulate trillions of positrons or more in a novel ‘multicell’ trap– an array of magnetic bottles akin to a hotel with many rooms, with each room containing tens of billions of antiparticles.”

Surko presented his work today (Feb. 18) here at the annual meeting of the American Association for the Advancement of Science.

The researchers are also developing methods to cool antiparticles to super-cold temperatures so that the particles’ movements are slowedand they can be studied. The scientists also want to compress large clouds of antiparticles into high-density clumps that can be tailored for practical applications.

“One can then carefully push them out of the bottle in a thin stream, a beam, much like squeezing a tube of toothpaste. These beams provide new ways to study how antiparticles interact or react with ordinary matter. They are very useful, for example, in understanding the properties of material surfaces.”

Surko said another project is to create a portable antimatter bottle that could be taken out of the lab and into various industrial and medical situations.
“If you could have a portable trap it would greatly amplify the uses and applications of antimatter in our world.”

Antimatter may sound exotic, butit’s already used in everyday technology, such as medical PET (Positron Emission Tomography) scanners. During a PET scan, the patient is injected with radioactive tracer molecules that emit positrons when they decay. These positrons then come into contact with electrons in the body, and the two annihilate, releasing two gamma-ray photons. The gamma-ray photons are then detected by the scanner, giving a 3-D image of what’s going on inside the body.
[Via: LiveScience]

Multifunctional Carbon Nanotubes – Introduction and Applications of Multifunctional Carbon Nanotubes

This animation of a rotating carbon nanotube g...

Image via Wikipedia

Over the past several decades there has been an explosive growth in research and development related to nano materials. Among these one material, carbon Nanotubes, has led the way in terms of its fascinating structure as well as its ability to provide function-specific applications ranging from electronics, to energy and biotechnology. Carbon nanotubes (CNTs) can be viewed as carbon whiskers, which are tubules of nanometer dimensions with properties close to that of an ideal graphite fiber. Due to their distinctive structures they can be considered as matter in one-dimension (1D).

In other words, a carbon nanotube is a honeycomb lattice rolled on to itself, with diameters of the order of nanometers and lengths of up to several micrometers. Generally, two distinct types of CNTs exist depending whether the tubes are made of more than one graphene sheet (multi walled carbon nanotube, MWNT) or only one graphene sheet (single walled carbon nanotube, SWNT). For a detailed description on CNTs please refer to the article by Prof. M. Endo.

A Truly Multifunctional Material

Irrespective of the number of walls, CNTs are envisioned as new engineering materials which possess unique physical properties suitable for a variety of applications. Such properties include large mechanical strength, exotic electrical characteristics and superb chemical and thermal stability. Specifically, the development of techniques for growing carbon nanotubes in a very controlled fashion (such as aligned CNT architectures on various substrates ) as well as on a large scale, presents investigators all over the world with enhanced possibilities for applying these controlled CNTs architectures to the fields of Vacuum microelectronics, Cold-cathode flat panel displays, Field emission devices, Vertical interconnect assemblies, Gas breakdown sensors, Bio Filtration, On chip thermal management, etc.

Apart from their outstanding structural integrity as well as chemical stability, the property that makes carbon nanotubes truly multifunctional in nature is the fact that carbon nanotubes have lot to offer (literally) in terms of specific surface area. Depending on the type of CNTs the specific surface areas may range from 50 m2/gm to several hundreds of m2/gm and with appropriate purification processes the specific surface areas can be increased up to ~1000 m2/gm.

Extensive theoretical and experimental studies have shown that the presence of large specific surface areas is accompanied by the availability of different adsorption sites on the nanotubes. For example, In CNTs produced using catalyst assisted chemical vapor deposition the adsorption occurs only on the outer surface of the curved cylindrical wall of the CNTs. This is because the production process of the CNTs using metal catalysts usually leads to nanotubes with closed ends, thereby restricting the access of the hollow interior space of the tube.

However, there are simple procedures (mild chemical or thermal treatments) which can remove the end caps of the MWNTs thereby presenting the possibility of another adsorption site (inside the tube) in MWNTs as schematically shown in Figure 1. Similarly, the large scale production process of SWNTs lead to the bundling of the SWNTs. Due to this bundling effect, SWNT bundles provide various high energy binding sites (for example grooves, Figure 1.). What this means is then that large surfaces are available in small volume and these surfaces can interact with other species or can be tailored and functionalized.

Figure 1: Possible binding sites available for adsorption on (left) MWNTs and (right) SWNTs surfaces.

Our group’s own research interests are directed into utilizing these materials in different applications related to energy and the environment, where their high specific surfaces areas play a crucial role. Two of such energy related applications are discussed below:

  • CNT Based Electrochemical Double Layer Capacitors
  • CNT Based catalyst support

CNT Based Electrochemical Double Layer Capacitors

Electrochemical Double Layer Capacitors (EDLC’s: Also referred to as Super Capacitors and Ultra-Capacitors) are envisioned as devices that will have the capability of providing high energy density as well as high power density. With extremely high life-span and charge-discharge cycle capabilities EDLC’s are finding versatile applications in the military, space, transportation, telecommunications and nanoelectronics industries.

An EDLC contains two non reactive porous plates (electrodes or collectors with extremely high specific surface area), separated by a porous membrane and immersed in an electrolyte. Various studies have shown the suitability of CNTs as EDLC electrodes. However, proper integration of CNTs with collector electrodes in EDLCs are needed for minimizing the overall device resistance in order to enhance the performance of CNT based supercapacitors. A strategy for achieving this could be growing CNTs directly on metal surfaces and using them as EDLC electrodes (Figure 2). EDLC electrodes with very low equivalent series resistance (ESR) and high power densities can be obtained by using such approaches.

Figure 2: (a) Artist rendition of EDLC formed by aligned MWNT grown directly on metals (b) An electrochemical impedance spectroscopy plot showing low ESR of such EDLC devices and (c) very symmetric and near rectangular cyclic voltamograms of such devices indicating impressive capacitance behavior.

CNT Based Catalyst Support

Catalysts play an important role in our existence today. Catalysts are small particles (~ 10-9 meter, or nanometer) which due to their unique surface properties can enhance important chemical reactions leading to useful products. In any kind of catalytic process, the catalysts are dispersed on high surface area materials, known as the catalyst support. The support provides mechanical strength to the catalysts in addition to enhance the specific catalytic surface and enhancing the reaction rates. CNTs, due to their high specific surface areas, outstanding mechanical as well as thermal properties and chemically stability can potentially become the material of choice for catalyst support in a variety of catalyzed chemical reactions.

We are presently exploring the idea of using CNTs as catalyst support in the Fischer Tropsch (FT) synthesis process. The FT reaction can convert a mixture of carbon monoxide and hydrogen in to a wide range of straight chained and branched olefins and paraffins and oxygenates (leading to the production of high quality synthetic fuels). Our preliminary FT synthesis experiments on CNT supported FT catalysts (generally cobalt and iron) shows that the conversion of CO and H2 obtained with FT catalyst loaded CNTs is orders of magnitude higher than that obtained with conventional FT catalysts (Figure 3), indicating that CNTs offer a new breed of non-oxide based catalyst supports with superior performance for FT synthesis.

Figure 3:CNT paper used as catalyst support for FT synthesis and comparison of conversion ratio’s of Co and H2

So far, CNT research has provided substantial excitement, and novel possibilities in developing applications based on interdisciplinary nanotechnology. The area of large scale growth of CNTs is quiet mature now and hence it could be expected that several solid large volume applications will emerge in the near future.

[Source: Azonano]

Futurism: Social and Legal Rights of Robots

By R. A. Freitas

If we give rights to intelligent machines, either robots or computers, we’ll also have to hold them responsible for their own errors. Robots, by analogy to humans, must conform to a “reasonable computer” standard. Sentient computers and their software should be held to the standard of competence of all other data processing systems of the same technological generation. Thus, if all “sixth generation” computers ought to be smart enough to detect bogus input in some circumstances, then given that circumstance, a court will presume that a “sixth generation” computer knew or should have known the input data were bogus.

Exactly who or what would be the tortfeasor in these cases? Unlike a living being whose mind and body are inseparable, a robot’s mind (software) and bodyare severable and distinct. This is an important distinction. Robot rights most logically should reside in the mechanism’s software (the programs executing in the robot’s computer brain) rather than in its hardware.

This can get mighty complicated. Robots could be instantly reprogrammed, perhaps loading and running a new software applications package every hour. Consider a robot who commits a felony while running the aggressive “Personality A” program, but is running mild-mannered ‘Personality M” when collared by the police. Is this a false arrest? Following conviction, are all existing copies of the criminal software package guilty too, and must they suffer same punishment? (Guilt by association?) If not, is it double jeopardy to take another copy to trial? The robot itself could be released with its aggressive program excised from memory, but this may offend our sense of justice.

The bottom line is it’s hard to apply human laws to robot persons. Let’s say a human shoots a robot, causing it to malfunction, lose power, and “die.” But the robot, once “murdered,” is rebuilt as good as new. If copies of its personality data are in safe storage, then the repaired machine’s mind can be reloaded and up and running in no time – no harm done and possibly even without memory ofthe incident. Does this convert murder into attempted murder? Temporary roboslaughter? Battery? Larceny of time? We’ll We’ll probably need a new class of felonies or “cruelty to robots” statutes to deal with this.

If robots are persons, will the Fifth Amendment protect them from self-incrimination? Under present law, a computer may be compelled to testify, even against itself, without benefit of the Fifth Amendment. Can a warrant be issued to search the mind of a legal person? If not, how can we hope to apprehend silicon-collar criminals in a world of electronic funds transfer and Quotron stock trading?

How should deviant robots be punished? Western penal systems assume that punishing the guilty body punishes the guilty mind – invalid for computers whose electromechanical body and software mind are separable. What is cruel and unusual punishment for a sentient robot? Does reprogramming a felonious computer person violate constitutional privacy or other rights?

Robots and software persons areentitled to protection of life and liberty. But does “life” imply the right of a program to execute, or merely to be stored? Denying execution would be like keeping a human in a permanent coma – which seems unconstitutional. Do software persons have a right to data they need in order to keep executing? Can robot citizens claim social benefits? Are unemployed robo-persons entitled to welfare? Medical care, including free tuneups at the government machine shop? Electricity stamps?Free education? Family and reproductive rights? Don’t laugh. A recent NASA technical study found that self-reproducing robots could be developed today in a 20-year Manhattan-Project-style effort costing less than $10 billion (NASA Conference Publication 2255, 1982).

In the far distant future, there may be a day when vociferous robo-lobbyists pressure Congress to fund more public memory banks, more national network microprocessors, more electronic repair centers, and other silicon-barrel projects. The machines may have enough votes to turn the rascals out or even run for public office themselves. One wonders which political party or social class the “robot bloc” will occupy.

In any case, the next time that Coke machine steals your quarter,better think twice before you kickit. Someday you may need a favor.

Rogue Planets Could Harbour Life!

In recent years, computers have become powerful enough to simulate the formation and evolution of planetary systems over many billions of years. One of the surprises to come out this work is that planets are regularly kicked out of these systems by slingshot effects. By some calculations, this fate may still await planets in our own Solar System. One interesting question is whether these so-called “rogue planets” could ever support life in the cold dark reaches of interstellar space.

Today, Dorian Abbot and Eric Switzer at the University of Chicago give us an answer. The generally accepted criteria for life is the presence of liquid water. They calculate that an Earth-like rogue planet could support liquid oceans if the water were heated from below by the planet’s core and insulated from above by a thick layer of ice. Their reasoning is straightforward. They define an Earth-like planet to have dimensions within an order of magnitude of Earth’s and having a similar composition. They then calculate the heat flux from the core and suggest that the thickness of the ice above would reach a steady state in about a million years. That’s much shorter than the lifetime of a hot core.

Note that this is some what different from the mechanism that keeps the subglacial ocean on Europa liquid. Here tidal forces play an important role and this generates heat within the ocean itself. By contrast, all the heat must come from the core of a rogue planet and travel through the ocean, One important unknown is the role that convection and conduction play in the less viscous regions of ice. Since convection carries heat much more quickly than conduction, this is an important factor and could potentially make the difference between the existence of liquid oceans or solid ice.

But with reasonable assumptions Abbot and Switzer say that a planet just 3.5 times the mass of Earth could maintain a liquid ocean. Even more surprising is their conclusion that a planet with a higher fraction of water need only be 0.3 times the size of Earth and still have a liquid ocean. That’s smaller than Venus but bigger than Mars. They call such a body a Steppen wolf planet “since any life in this strange habitat would exist like a lone wolf wandering the galactic steppe.” It’s not hard imagine the possibility of life evolving around hydrothermal vents before the planet’s ejection or even afterwards. These are exciting calculations.

Steppenwolf planets would provide one way for life to spread through the galaxy. And if any come within a 1000 AU of our Sun, the reflected sunlight from them ought to be visible in the far infrared to the next generation of telescopes.That raises an interesting idea: the possibility of visiting such a place. Any passers by would certainly be easier to get to than planets orbiting other stars.

Time to get out the binoculars and lens cloths and start looking.

[Ref:arxiv.org/abs/1102.1108: The Steppenwolf: A Proposal For A Habitable Planet in Interstellar Space, Credit: Arxiv Blog]

Fate of Our Civilization and Tactics

Oxygen content of the atmosphere over the last...

Image via Wikipedia

By J. R. Mooneyham

Extinction. Or collapse into a permanent medieval (or worse) state of anarchy and deprivation. These appear to be the normal ends of technological civilizations in our galaxy, based on everything we know circa early 2003. The above statement is not made lightly. Rather, it is a conclusion based on more than a decade of dedicated research into the matter.

The Fermi Paradox which contrasts the 100% probability of life and intelligence developing on Earth against the thunderous silence from the heavens so far (no alien signals) may be resolved by four things: One, gamma ray bursters which may have effectively prohibited the development of sentient races until only the last 200 million years; Two, the lengthy gestation period required for the emergence of intelligence (which almost requires the entire useful lifespan of a given planet, based on our own biography); Three, the need for an unusually high measure of stability in terms of climate over hundreds of millions of years (the ‘Goldilocks’ scenario, enabled by a huge natural satellite like our Moon moderating the tilt of a planet’s axis, as well as gas giants parked in proper orbits to mop up excess comets and asteroids to reduce impact frequencies for a living world); and Four, an extremely dangerous 600 year or so ‘gauntlet’ of challenges and risks most any technological society must survive to become a viable long term resident of the galaxy (i.e. getting a critical mass of population and technology off their home world, among other things). That 600 year period may be equivalent to our own span between 1900 AD and 2500 AD, wherein we’ll have to somehow dodge the bullets of cosmic impacts, nuclear, biological, and nanotechnological war, terrorism, mistakes, and accidents, as well as food or energy starvation, economic collapse, and many other threats, both natural and unnatural. So far it appears (according to SETI results and other scientific discoveries) extremely few races likely survive all these.

There’s six major guiding principles by which to defend civilization against all the worst possible threats to its future:

  • One, remove or minimize the sources of all reasonable motivations to harm others from the entirety of humanity– as well as the means to carry out such harm
  • Two, put into place and maintain robust structural impediments to, and socio-economic discouragements of, the domination of the many by a wealthy, powerful, or charismatic few
  • Three, insure the utmost education and technological empowerment possible of the average individual world citizen, wherever this does not unreasonably conflict with the other principles listed here.
  • Four, work to preserve existing diversity in life on Earth and its natural environments, as well as in human behavior, culture, media, languages, and technologies, and even nourish expansion in such diversity within human works, wherever this may be accomplished with minimal conflict regarding the other principles listed here.
  • Five, excesses in intellectual property protections, censorship, and secrecy all basically amount to the same thing, so far as posing threats to the robustness, prosperity, security (and even survival) of civilization is concerned. Therefore all three must be deliberately and perpetually constrained to the absolute minimum applications possible to protect humanity. In these matters it would typically be far better to err on the side of accessibility, openness, and disclosure, than the other.
  • Six, seek out and implement ever better ways to document human knowledge and experience in the widest, deepest, and most accurate fashions possible for both the present and future of humanity, and offer up this recorded information freely to the global public for examination. This means the more raw the data, and the more directly sourced, the better. The more raw the data and less colored by opinions of the day, the better present and future citizens will be able to apply ever improving tools of scientific analysis to derive accurate results, and drive important decisions.

Work faithfully and relentlessly to implement and continue the enforcement of these six principles into perpetuity (always seeking the optimal balance between them all), and you should reduce overall risk levels for civilization to that stemming from true mental illness or pure accidents.

Robust and enlightened public health programs (among other things) can reduce the total risk of mental illness to society to negligible levels. That would leave the risk of accidents to deal with. Reducing the risks presented from various accidental events is another subject in itself, that I’ll leave to others to address.

Especially in a world where shortages of money, talent, knowledge, and time still define more of our economics and society, than anything else. Anyone working to achieve one or more of these aims immediately encounters active opposition from various quarters too. That may sound hard to believe, but look at a few examples: Cuts in military spending even in the most advanced and highly developed nations like the USA face stiff opposition from many politicians because defense cuts are apparently less popular with voters than defense budget increases– almost no matter how peaceful the world happens to be at the time. Any cuts that do somehow get passed can often only be implemented by shutting down unneeded bases or various extravagant weapons programs. But either of those considerations bring up cries of “lost jobs”, even in good times when those jobs might easily be replaced with other, less lethal ones. Weapons proliferation around the world likewise is often defended as generating jobs at home, despite the fact those weapons often end up being used by naughty allies to kill innocents in conflicts where we ourselves have little or no involvement– except for our brand name and label being prominently emblazoned on the blasted shards in various scenes of mass death and destruction. Later on we often wonder why people on the receiving end of these weapons (in the hands of others) hate us so. And sometimes the weapons we sell end up being used against our own soldiers. But still we sell and sometimes even give them away.

Maybe aiding in the spread of democracy and free speech through the world would seem an easier goal than stopping the proliferation of weapons and weapon technologies? Sorry, but no. Indeed, here in America our track record for a long time now is behavior that says democracy and free speech is too good for lots of folks other than ourselves. You see, the ill will built up from all that weapons proliferation, plus other actions on our part, has resulted in lots of countries where we’d be tossed out on our ear if real democracies suddenly sprang up in them.

Like what actions am I talking about? Things like manipulating elections and interfering with other attempts at legitimate changeovers in power in foreign countries. CIA involvement to prop up dictatorships with whom we have deals for things like oil or other items. Stuff like that. There’s no telling how many democratic movements we’ve helped crush or cause to be stillborn around the world in the past century. Of course, you could say we were just emulating our parent countries such as those of western europe, which did many of the same things for several centuries before we ourselves successfully rebeled againstthem.

It’s almost like we don’t want any other rebellions to succeed, in order to retain our own ‘special place’ in history. But is that fair? No.

Of course, sometimes a nation manages to overthrow its oppressors despite our opposition and dirty tricks. But when that happens, our previous sins in the conflict result in whatever new government emerges being dead-set against us. Like in Iran, with the fall of the Shah. Our interference with their internal affairs so antagonized and polarized the Iranians that one result was eventual domination of the country by an Islamic extremist movement, which managed to overthrow the US-supported Shah. And naturally, when things didn’t go our way there we froze Iran’s assets and put in place trade sanctions against them. And in response, they may be seeking to obtain their own weapons of mass destruction and supporting various terrorist actions around the world.

Could it be we are gradually arranging our own (maybe even civilization itself’s) spectacular end with all this chicanery? For the longer we continue this type of behavior, the more difficult and scary it becomes to consider stopping it. And the worse the eventual consequences might be. After all, we’re making a lot of enemies out there. A pretty hefty chunk of the human race, in fact. If and when they all finally overthrow their US-supported dictators or oppressive ruling regimes, they might not exactly want to send us flowers.

I vote we try to find a way out of this mess now rather than prolonging and worsening it with politics-and-economics-as-usual. Before it’s too late. Before our world too becomes one of the silent ones in the galaxy.

 

%d bloggers like this: